SP How Long Does it Take?

Rational Exponents:

Write each expression in exponential form:

1.
$$(\sqrt[3]{v})^7 \vee \sqrt{7/3}$$

2.
$$(\sqrt[4]{5x})^3 (5x)^{3/4}$$
 3. $\sqrt[7]{x^4} \times \sqrt[4]{7}$

3.
$$\sqrt[7]{x^4}$$
 × $\sqrt[4]{7}$

4.
$$(\sqrt[3]{4y})^4$$

5.
$$\frac{1}{\left(\sqrt[5]{y}\right)^{11}} \frac{1}{y^{1/5}}$$

6.
$$\frac{1}{\left(\sqrt[6]{3b}\right)^5}$$

$$\frac{1}{\left(3b\right)^{5/6}}$$

Write each expression in radical form. :

7.
$$y^{\frac{2}{3}}$$

8.
$$b^{\frac{1}{4}}$$

9.
$$n^{\frac{-5}{3}}$$
 (3/n)5

10.
$$(2c)^{\frac{-2}{5}}$$

11.
$$(6x)^{\frac{1}{7}}$$

12.
$$(12y)^{\frac{3}{8}}$$

Simplify:

13.
$$81^{\frac{3}{4}}$$

(4) 81)

3

3

16. $64^{-\frac{7}{6}}$

17

128

14.
$$49^{-\frac{3}{2}}$$
 $(\overline{)49})^3$
 $17. 9^{\frac{3}{2}}$
 $(\overline{)49})^3$
 3^3

15.
$$8^{\frac{5}{3}}$$
 $(3)^{8}$
 $(3)^{5}$
 $(3)^{25}$
 $(3)^{25}$

Solve for the variable.

19.
$$\sqrt[3]{5x-6} = 4$$

 $5x-6 = 64$
 $5x = 70$
 $x = 14$

21.
$$\frac{1}{\sqrt[4]{t^3}} = \frac{1}{8}$$

$$8 = \sqrt[4]{t^3}$$

$$2 = \sqrt[4]{t}$$

$$16 = t$$

20.
$$(3x+2)^{2/5} = 4$$

 $(5/3x+2)^2 = 4$
 $5/3x+2 = 2$
 $3x+2=32$
 $3x=30$ $(x=10)$

22.
$$\sqrt[6]{m^5} = 3125$$

$$(6)m = 5$$

$$(m = 15625)$$

- 23. Consider the growth of 20 E. coli bacteria. The number of bacteria doubles every 6 hours.
 - a. Write a function, using a rational exponent, for the number of bacteria present after x hours. $f(x) = 20(2)^{x/6}$
 - b. Rewrite the function using the properties of exponents, so that the exponent is an integer. What is the growth rate/percent of growth every hour?

Growth rate/percent of growth every nour?
$$f(x) = 20(6\sqrt{2})^{x}$$

$$f(x) = 20(6\sqrt{2})^{x}$$

$$f(x) = 20(6\sqrt{2})^{x}$$

24. If there are originally 20 bacteria, at what rate/percent are they growing if the population doubles in 7 hours?

40 = 30 (1+v) 7 (5-10-10)

$$40 = 20 (1+r)^{7}$$

$$2 = (1+r)^{7}$$

$$1.10 = 1+r$$

a. What about if the bacteria quadruples in 9 hours?

at about if the bacteria quadruples in 5 hours:

$$80 = 20 (1+r)^{9}$$

$$4 = (1+r)^{9}$$

$$1.17 = 1+r$$

25. If there are originally 20 bacteria and they double each hour, how long will it take for the population to reach 160 bacteria? Solve the problem algebraically.

$$160-20(2)^{x}$$
 (x=3hrs)

26. If there are originally 80 bacteria and they double each hour, how long will it take for the population to reach 1280 bacteria? Solve the problem algebraically.

$$1280 = 80(2)^{x}$$
 $(x=4 hrs)$