Solving Radical Equations:

MGSE9-12.A.REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

A <u>radical equation</u> is an equation involving square roots, cubed roots, or n^{th} (any) roots of polynomial expressions.

Remember also that the **inverse** function of a **radical** involves **raising an expression to a power** equal to the index of the radical.

1. Find the inverse of the following functions:

a)
$$f(x) = (x-4)^3$$
 b) $g(x) = \sqrt{x+7}$

If
$$A = B^n$$
, then $\sqrt[n]{A} = B$. Conversely, if $\sqrt[n]{A} = B$ then $A = B^n$.

There are two more useful properties involving equations that have radicals or exponents on both sides of the equation.

If $(A)^n = (B)^n$, then A = B, and If $\sqrt[n]{A} = \sqrt[n]{B}$, then A = B.

2. Solve each equation below.

a)
$$\sqrt[7]{x+3} = \sqrt[7]{15}$$
 b) $(2x-8)^3 = x^3$

If
$$(A)^n = (B)^n$$
, then $A = B$, and If $\sqrt[n]{A} = \sqrt[n]{B}$, then $A = B$.

3. Of course, we may have to work a little to get equations in that form. If we know that $\sqrt[4]{2x-1} - \sqrt[4]{15} = 0$, how can we rewrite the equation to match one of the properties above?

Solve.

4. Sometimes solving a radical equation can produce **<u>extraneous solutions</u>**. An extraneous solution is:

- 5. Let's look at a simple example first. Take the equation $\sqrt{x} = -3$.
- a. Solve $\sqrt{x} = -3$ algebraically.

- b. How can I check my answer?
- c. Let's try solving by graphing. Graph \sqrt{x} into y_1 and -3 into y_2 .

Where would I find the solution on the graph?

What do you notice? What is the solution to this equation?

6. Let's practice a few more. Do either of these equations have extraneous solutions?

a.
$$\sqrt[3]{5x+1} + 6 = 2$$

b. $x - 3 = \sqrt{30 - 2x}$

7. Can you make a general statement as to when a radical equation may have an extraneous solution? Can it happen regardless of the root (index)?

Solving Radical Equations-Solve each of the following radical equations. [1] $\sqrt[4]{6x-5} = \sqrt[4]{x+10}$ [2] $\sqrt[3]{6x-5} - \sqrt[3]{x+10} = 0$

[3] $2\sqrt[3]{10-3x} = \sqrt[3]{2-x}$ [4] $\sqrt{3x+5} + 2\sqrt{x} = 0$

[5] $12\sqrt[4]{x-1} + 10 = 4$ [6] $n = \sqrt{6+5n}$

$$[7] \sqrt[3]{3x+1} + 5 = 3$$

$$[8] \sqrt[3]{x+40} = -5$$

$$[9] -2\sqrt[5]{2x-1} + 4 = 0 \qquad [10] \sqrt{6-r} = r$$

[11]
$$\sqrt{3x+7} = x-1$$
 [12] $\sqrt{4x-7} + 2 = 5$

 $[13] \sqrt[4]{2x} - 13 = -9$

$$[15] \sqrt{2x-1} + 5 = 2 \qquad [16] \sqrt{50-5x} = x-10$$

Solving Radical Equations (2): Solve the equation.

1) $\sqrt{x-12} = 9$

2) $\sqrt[3]{2x+1} - 3 = 0$

3)
$$-5\sqrt{x+7} = 25$$
 4) $\sqrt[4]{2x+6} = 2$

5) $3 = \frac{1}{4}\sqrt{3x+30}$ 6) $-3 = 2\sqrt{x-7}+7$

7)
$$\sqrt{4x+12} = \sqrt{6x}$$
 8) $5\sqrt{x-1} = \sqrt{x+1}$

9)
$$\sqrt[3]{4x} = \sqrt[3]{x+7}$$
 10) $x+3 = \sqrt{x+5}$

11)
$$\sqrt{3x+13} + 3 = 2x$$
 12) $\sqrt{x+8} - x = -4$