Solving Radical Equations:

MGSE9-12.A.REI. 2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions mayarise.

A radical equation is an equation involving square roots, cubed roots, or $\mathrm{n}^{\text {th }}$ (any) roots of polynomial expressions.

Remember also that the inverse function of a radical involves raising an expression to a power equal to the index of the radical.

1. Find the inverse of the following functions:
a) $f(x)=(x-4)^{3}$
b) $g(x)=\sqrt{x+7}$

$$
\text { If } A=B^{n} \text {, then } \sqrt[n]{A}=B \text {. Conversely, if } \sqrt[n]{A}=B \text { then } A=B^{n} \text {. }
$$

There are two more useful properties involving equations that have radicals or exponents on both sides of the equation.

$$
\text { If }(A)^{n}=(B)^{n}, \text { then } A=B \text {, and If } \sqrt[n]{A}=\sqrt[n]{B} \text {, then } A=B .
$$

2. Solve each equation below.
a) $\sqrt[7]{x+3}=\sqrt[7]{15}$
b) $(2 x-8)^{3}=x^{3}$

$$
\text { If }(A)^{n}=(B)^{n} \text {, then } A=B \text {, and If } \sqrt[n]{A}=\sqrt[n]{B} \text {, then } A=B
$$

3. Of course, we may have to work a little to get equations in that form. If we know that $\sqrt[4]{2 x-1}-\sqrt[4]{15}=0$, how can we rewrite the equation to match one of the properties above?

Solve.
4. Sometimes solving a radical equation can produce extraneous solutions. An extraneous solution is:
5. Let's look at a simple example first. Take the equation $\sqrt{x}=-3$.
a. Solve $\sqrt{x}=-3$ algebraically.
b. How can I check my answer?
c. Let's try solving by graphing. Graph \sqrt{x} into y_{1} and -3 into y_{2}.

Where would I find the solution on the graph?

What do you notice? What is the solution to this equation?
6. Let's practice a few more. Do either of these equations have extraneous solutions?
a. $\sqrt[3]{5 x+1}+6=2$
b. $x-3=\sqrt{30-2 x}$
7. Can you make a general statement as to when a radical equation may have an extraneous solution? Can it happen regardless of the root (index)?

Solving Radical Equations- Solve each of the following radical equations.
[1] $\sqrt[4]{6 x-5}=\sqrt[4]{x+10}$
[2] $\sqrt[3]{6 x-5}-\sqrt[3]{x+10}=0$
[3] $2 \sqrt[3]{10-3 x}=\sqrt[3]{2-x}$
[4] $\sqrt{3 x+5}+2 \sqrt{x}=0$
[5] $12 \sqrt[4]{x-1}+10=4$
[6] $n=\sqrt{6+5 n}$
[7] $\sqrt[3]{3 x+1}+5=3$
[8] $\sqrt[3]{x+40}=-5$
[9] $-2 \sqrt[5]{2 x-1}+4=0$
[10] $\sqrt{6-r}=r$
[11] $\sqrt{3 x+7}=x-1$
[12] $\sqrt{4 x-7}+2=5$
$[14] 3 \sqrt{x+6}+5=14$
[15] $\sqrt{2 x-1}+5=2$
[16] $\sqrt{50-5 x}=x-10$

Solving Radical Equations (2):

Solve the equation.

1) $\sqrt{x-12}=9$
2) $\sqrt[3]{2 x+1}-3=0$
3) $-5 \sqrt{x+7}=25$
4) $\sqrt[4]{2 x+6}=2$
5) $3=\frac{1}{4} \sqrt{3 x+30}$
6) $-3=2 \sqrt{x-7}+7$
7) $\sqrt{4 x+12}=\sqrt{6 x}$
8) $5 \sqrt{x-1}=\sqrt{x+1}$
9) $\sqrt[3]{4 x}=\sqrt[3]{x+7}$
10) $\sqrt{3 x+13}+3=2 x$
11) $\sqrt{x+8}-x=-4$
