Tangent Radius Semi -circle Chord Major arc Diameter Minor arc Inscribed angle Secant Degrees

- 1. In the diagram, point B is the center of the circle.
- a. *ED* is called a ______.
- b. \overline{BC} is called a _____.
- c. \overline{DA} is called a ______.
- d. ∠EDA is called an _____.
- e. A line that intersects a circle in two points is called a _____.
- f. A line that intersects a circle in exactly one point is called a ______. The point of
- intersection is called the ______.
- g. Arcs of circles are measured in ______.
- h. An arc that is less than 180 degrees is called a ______.
- i. An arc that contains 180 degrees is called a ______.
- j. An arc that is more than 180 degrees is called a ______.
- 2. AB = CD = 14. Find the value of x and then FE.
 - A F 14 B 3x 2 E 7x 10 D

3. Solve for the value of x.

x = _____

FE = _____

x = ____

4. Is FG tangent to $\bigcirc H$? Show your work.

5. \overline{AB} and \overline{AD} are tangent to $\odot C$. Solve for x.

x = ____

6. Find the value of x in circle Y.

7. Find the value of y.

x = ____

y = _____

8. Find the value of x.

x = _____

10. In the figure to the right, find: $m\angle CBA$ and $m\angle CFA$ $mABC=240^{\circ}$

9. Solve for y and w.

y = _____

w = _____

11. The quadrilateral ABCD is inscribed in the circle. Solve for the value of x and y, then find $m(\angle C)$.

x = _____

y = _____

m(∠*C*) = _____

12. Find the value of x.

13. Find the value of x.

14. Find the value of x.

15.

16.

x = _____

17. Find the length of arc DE.

18. Find the area of the **shaded** region.

Arc Length = _____

Area of sector = _____

19. Find the length of AC in the following circle:

Arc Length = _____

20. What is the radius of the following circle if the arc length of *ABC* is 2π cm?

r = _____

21. If the area of the sector is 22.5π cm^2 , find the radius.

r =

Find the volume of each solid. All measurements are in inches. Round approximate answers to the nearest hundredths.

22. Oblique rectangular prism

23. Right cylinder

24. Right semicircular cylinder (h)

25. oblique cylinder

26. Square pyramid

27. Cone

28. Triangular pyramid

29. Semicircular cone

30. Cylinder with cone removed

31.

33.

34. As an exercise for her art class, Jasmine has cast a plaster cube 12 cm on each side. Her assignment is to carve the largest possible sphere from the cube. After the sphere is carved out, how much plaster is left?

t, now much plaster is lett:

35. Find the volume of plastic (to the nearest cubic inch) needed for this hollow toy component. The outer-hemisphere diameter is 5.0 in. and the inner-hemisphere diameter is 4.0 in.

Express the volume of each solid.

36. Right rectangular prism

37. Oblique cylinder

38. Right rectangular prism with a rectangular hole

